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Abstract— the existing structural uncertainty of the alarm 

process signal, which consists in the unknown dimension of the 

model and the uncertainty of the type of the process terms, 

requires the use of special methods and models of signal 

recognition that can work under conditions of a priori 

uncertainty. The resolution of the structural model is affected 

by the sampling frequency of the input signal, the competition 

of the components of the effective core filter, the intermodel 

decimation of the signal samples, the decimation of the residual 

samples, and the order of the initial filter. As the filter order 

increases, the signal processing window increases, so an 

unjustified increase in the order of the adaptive filter is 

undesirable. This report discusses a new approach to adaptive 

structural analysis based on a multi-channel adaptive filter. The 

advantages of multi-channel structures are the possibility of a 

different step within the model decimation in the filters. 

Keywords—adaptive structural analysis, Prony method, 

signal processing, canonical filter, core filter, noise filter, 

composite filters, relay protection  

I. INTRODUCTION 

In the information environment of a digital substation, 
current and voltage signals exist in the form of Sampled 
Values Stream data, the properties of which cannot be 
predetermined by algorithms for the digital processing of 
relay protection devices. In this regard, the characteristics of 
methods for recognizing the structure of a digital signal are 
determined only by the substantive properties of structural 
models and methods for controlling their dimension [1].  

It is known [2] that one of the fundamental properties 
that determine the characteristics of the classical structural 
model is the cardinal dependence of its recognition ability on 
the noise filter potential. At the same time, the noise filter for 
the classical adaptive structural model is only a formal 
concept and can be allocated as a separate functional block of 
the structural model only after the model complete is tuning. 
Therefore, the classical structural model, concentrating all the 
information about the characteristic parameters of the signal 
in its characteristic polynomial, cannot represent the signal 
structure in the form of models with distributed parts. This 
limits the potential of the classical structural model, reducing 
its performance. 

Quite recently, it was discovered [3] that further 
improvement of methods for recognizing the signal structure 
is associated with the use of structural models with 

distributed parts. This is the topic of this report. It discusses 
the basics of a new method of multichannel adaptive 
structural analysis using distributed structural models of the 
electrical signal. 

In contrast to the classical model, the multichannel 
structural model reduces the internal competition of the 
canonical filters of the effective core, which reduces the 
overall order of the filter. 

II. THE BEGINNING OF THE THEORY OF ADAPTIVE MODELS 

The origins of the theory of adaptive models go back to 

the Prony method. In 1795, Prony used a method based on 

fitting an exponential model to measurements at regular 

intervals to interpolate the data of his experiments on gases. In 

the original article by Prony [4], the method is described for 

the case of an exact fit of the exponents to the available 

measurements, while the number of samples used is equal to 

the number of exponents. The modern presentation of the 

Prony method for the case when the number of samples far 

exceeds the number of exponents, as well as the development 

for the case of complex exponents, is presented in many 

scientific papers; the most famous of them is the work [5]. 

The Prony method in its original form is of little use for 

practical application since the additive noise in the signal leads 

to a significant variance in the estimates of the exponential 

arguments. But Prony discovered the main property of his 

model, which is that if the terms of the exponential model are 

the basis of the eigenfunctions of a certain difference equation, 

then the interpolation function satisfies this differential 

equation. It is this property of the model that is the essence of 

the Prony method since it justifies the connection between the 

roots of the characteristic equation with the arguments of the 

exponents. However, if Prony had been familiar with 

operational calculus, he would have easily established this 

connection using the Laplace transform [2]. 

When considering the Prony method, it should be borne 

in mind that it was used in its original form to approximate a 

sequence of data and then calculate (interpolate) the 

approximated function at intermediate points. The method 

was not intended to determine the structure of the signal at 

all. 

The task of recognizing the signal structure of electrical 

systems has become relevant with the increase in computing 

resources of digital relay protection and emergency control 
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systems. At first, when relay protection terminals could not 

yet provide a developed computing environment, algorithms 

of digital protections were based mainly on simple methods of 

determining the parameters of the fundamental harmonic of 

the steady-state and transient process of the electric network. 

Methods were used to calculate the amplitude and phase of the 

first harmonic of the electric quantity, based on the 

assumption that they have a sinusoidal form.  

Then algorithms were developed for non-sinusoidal 

signals as well. The desire to estimate the parameters of the 

fundamental harmonic, resorting to the wealth of possibilities 

offered by digital filters, led to the widespread introduction of 

the relay protection technique of orthogonal component 

filters, based most often on the Fourier transform. 

As relay protection terminals were improved, the first 

experiments were undertaken to optimally estimate the 

fundamental harmonic of the transient mode signal of an 

electrical system. The least-squares method was used with a 

rather computationally expensive singular decomposition as 

the solution tool.  

Most importantly, all of the proposed algorithms were 

designed for evaluating the fundamental harmonic, and 

without structural analysis of the signal (determination of the 

signal structure). Therefore, they cannot be effectively used in 

modern systems of adaptive control of electric networks, 

adaptive relay protection, or fault location systems. 

Furthermore, the application of structural analysis makes 

it possible to expand the functionalities of centralized grid 

control systems, when to avoid overloading the 

communication lines and the computing resources of high-

level systems, it is necessary to transmit the information on 

the processes in the network recorded in a remote point in a 

compressed form by conducting a structural compression of 

oscillograms. Along with this structural analysis allows 

building a hardware-software complex of recognition of the 

weak signal component on the background of the dominant 

signal components, which are, in fact, insurmountable 

interference to it. 

III. CANONICAL COMPONENT FILTER AS THE MAIN ELEMENT 

OF DISTRIBUTED STRUCTURAL MODELS 

Structural analysis of the electrical signal representation 
of the signal assumes a sum of its components [9]. A filter that 
rejects the signal component is called canonical. 

So, the aperiodic component 

( ) sT k
x k e

−α=  

will be rejected by the canonical filter 

1 1( ) ( ) ( 1), ,sT
e k x k a x k a e

−α= + − = −  (1) 

a decaying oscillation  

( ) sin( )sT k

sx k e T k
−α= ω + ψ – 

by the canonical filter 

1 2

2

1 2

( ) ( ) ( 1) ( 2),

2 cos( ), ,s sT T

s

e k x k a x k a x k

a e T a e
−α − α

= + − + −

= − ω =
 (2) 

where sT  – sampling period, k – sample number.  

Therefore, theoretically, the structural model is a cascade 
of filters that reject the signal components [3, 4]. 

IV. CLASSICAL ADAPTIVE FILTER AS A STRUCTURAL MODEL 

The classical structural model is an adaptive filter tuned 
to the signal reject, the part of the characteristic roots of which 

are aligned to the signal components. The other part of its roots 
is not associated with the signal but may contain roots that, in 
principle, cannot be separated from the signal roots. [1]. 
Together, they form the roots set of the model effective core. 
The rest of the roots that are inconsistent with the signal form 
a noise filter. Therefore, the classical structural model tuned 
to the signal – the effective structural model [3] – can be 
represented by an effective core filter (ECF) and a noise filter 
(NF) (Fig. 1). In turn, the effective core filter will consist of a 
cascade of canonical filters defined by roots related to the 
signal roots set (Fig. 2). 

 

ECF
( )x k

NF
( )e k

 
Fig. 1. Basic components of a classical adaptive structural model 

 

1C
( )x k

3C
( )ce k

uMC

 

Fig. 2. Structure of the effective core filter: iC  – canonical filter of the i-nd 

component, Mu – number of components 
 

The division of the classical structural model into an 
effective core filter and a noise filter is conditional, although 
it is performed according to well-founded rules [1]. Such a 
representation of the model is important purely methodically 
for forming a component model of a signal and explaining the 
fundamental properties of adaptive structural models [2]. 
Unfortunately, the classical model cannot take advantage of 
such a separation, since its tuning is carried out taking into 
account all the coefficients, even if the model is represented 
by a cascade of separate filters. It is this circumstance that 
limits the maximum performance of the classical adaptive 
structural model. 

Let's show the application of rules of division of the 
classical structural model into an effective kernel filter and a 
noise filter on the example of decomposition of the structural 
model and construction of the component model of the signal 
of the emergency process, samples of which are taken from 
work [2]. 

The order of the useful signal is 5 (the signal contains the 
first and third harmonics and aperiodic components), i.e. 

5
S

M = . The adaptive structural model order took more than 

the order of the useful signal to illustrate the application of the 
division rules of the classical model.  
 During adjustment and decomposition of the 

adaptive filter tuned to the signal, the interactive adaptive 

structural analysis environment described in [2] was used 

(Table 1). 

 

TABLE I. PARAMETERS OF THE STRUCTURAL MODEL 

Parameter Value 

Sampling interval, 
sT  1/1200с 

Signal length, L 39 

The structural model order, M 19 

Model within decimation, ν  1 

The structural model tuning 

method 

TLS - the solution with the 

minimum norm (Total Least 
Squares Method) 
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The characteristics of the adaptive structural model are 
presented in Table 2. The frequency estimates and decay 
coefficients of the components of the recognized signal are 
determined by the root agreement equation. The assignment 
of roots to one or another region is performed according to 
the rules of root separation described in [1]. 

 
TABLE II. DECOMPOSITION OF THE ADAPTIVE STRUCTURAL MODEL

 

№ 

The 
adaptive 

model 

root ζi  

Root 

modulus

iζ  

Relative 
freq. 

sTΩ = ω , 

degree 

Freq. ˆ
i

f , 

Hz 

Decay coef. 

ˆ
i

α , s-1 

1 0,9654± 
j0,26 

0,9998 ±15,1 50,24 0,02 
2 

3 0,7080± 
j0,7085 

1,0016 ±45,0 150,06 1,89 
4 

5 0,9406 0,9406 0 0 73,5 

6 0,3511± 

j0,7074 
0,7898 ±61,6 212,02 285,7 

7 

8 0,2107± 

j0,7927 
0,8202 ±75,1 250,38 238,1 

9 

10 –0,0754± 
j0,8393 

0,8202 ±95,1 317,11 204,1 
11 

12 –0,3432± 
j0,7703 

0,8433 ±114,0 380,04 204,1 
13 

14 –0,5765± 
j0,6171 

0,8445 ±133,1 443,51 204,1 
15 

16 –0,7414± 
j0,3982 

0,8419 ±151,8 505,91 208,3 
17 

18 –0,8300± 
j0,1347 

0,8409 ±170,8 569,28 208,8 
19  

The first four roots belong to the harmonic roots. They 
are consistent with the basic and third harmonics. It could be 
assumed that the roots with numbers 8 and 9 of the adaptive 
filter are associated with a harmonic frequency of 250 Hz, but 

because of the significant decay coefficient (238.1 
1

s
−

) and 

high relative frequency (75.1 degree), they refer to roots 

uncoordinated with the signal. The remaining damped 
oscillations of the component model are also defined by the 
rules as unconnected with the signal. No causal roots 
appeared among the roots of the adaptive structural model.  

Thus, the signal model decomposition rules determined 
the effective kernel polynomial for the first five roots: 

1 2

3 4 5

( ) 1 4.285 7.876

7.794 4.146 0.9406

cMP
− −

− − −

ζ = − ζ + ζ −

− ζ + ζ − ζ
 (3) 

by isolating it from the polynomial of the general adaptive 
structural model. Noise filter polynomial: 

1 2

3 4 5

6 7 8

9 10 11

12 13 14

( ) 1 4.0101 9.1621

15.4167 20.9870 24.1714

24.1071 21.0643 16.1904

10.9259 6.4193 3.2239

1.3322 0.4152 0.0757 .

− −

−

− − −

− − −

− − −

− − −

ζ = + ζ + ζ +

+ ζ + ζ + ζ +

+ ζ + ζ + ζ +

+ ζ + ζ + ζ +

+ ζ + ζ + ζ

cM M
P

 (4) 

The amplitude-frequency characteristics of the effective 
core and noise filters are shown in Figure 3.  

 

 
a 

 
b 

 
c 

Fig. 3. The amplitude-frequency response of the general adaptive filter (a) 
effective core filter (b) and noise filter (c) 

V. COMPOSITE FILTER AS A COMPONENT MODEL 

The composite model of the term is formed as a filter 
created from the set of roots of the structural model of the 
signal after excluding the root of the recognized term [2]. The 
composite filter will block all components of the signal, 
except for the component whose root is missing in its 
characteristic polynomial. Therefore, the signal at the output 
of the composite filter will be proportional to the recognized 
term. 

In general, a composite filter is a cascade of canonical 
filters of signal components (except the canonical filter of the 
recognized component) and a noise filter. The composite filter 
of a component is convenient as a tool for evaluating the 
capabilities of an adaptive filter when recognizing a 
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component and, in addition, characterizes the influence of 
canonical filters of other components and a noise filter on this 
component. 

Figure 4 shows the operation of the composite filters of 
the model formed in the form of a cascade of filters (1) and (2) 
for the signal  

0,06 0,03( ) cos
12

k kx k e e k− − π 
= +  

 
 (5) 

 

 
a 

  

 
b 

 
c 

Fig. 4. Isolation of the damped oscillation (b) and the aperiodic component 
(c) by composite filters obtained from the model in the form of filters (1) and 
(2) of the original signal (a) 

 

The reaction of composite filters vividly illustrates the 
competition of canonical filters (1) and (2): each of them 
significantly weakens the component blocked by the other. 

VI. RESIDUAL SIGNAL FILTER AS A BASIS FOR 

MULTICHANNEL STRUCTURAL ANALYSIS 

The residual signal filter is a filter that is tuned to the 
output signal of a cascade of canonical filters [7]. 
Interestingly, the more precisely the canonical filter is 
adjusted to the barrier of its component, the better conditions 
are created for tuning the residual signal filter to components 

that are not provided for in the cascade of canonical filters. 
The opposite statement is also true, since in this case, the 
residual signal filter behaves to canonical filters as a 
composite filter, selectively amplifying their components. 

This property of the elements of a multichannel adaptive 
filter creates a positive feedback effect, due to which the 
convergence of the tuning procedure of individual parts of the 
distributed structure of the adaptive filter increases. As a rule, 
the number of iterations σ does not exceed 5. 

The uniqueness of the residual signal filter also lies in the 
fact that it takes on the task of blocking the components that 
remain free after the canonical filters work, and forms a noise 
filter in its structure, thereby creating a solid basis for 
recognizing the entire signal structure. 

VII. MULTICHANNEL ADAPTIVE FILTER AS THE BASIS OF 

MULTICHANNEL STRUCTURAL ANALYSIS 

The multichannel adaptive filter (Fig. 5) is a set of 
channels intended for tuning the canonical filters of 

components 
i

C  and the channel for tuning the residual signal 

filter 
n

F  [5]. The number of canonical filters in a 

multichannel system is set based on a priori information about 
the signal structure or following the requirement that the 
component must be determined directly without analyzing the 
roots of the characteristic equation of the adaptive filter. Each 
channel has its solver, which forms either an estimate of the 

coefficients a
σ

i
 of the canonical filter 

i
C or a

σ

n
 the residual 

signal filter at the current stage σ. The methods used by the 
solver to configure filters can be different [3, 8]. 

 

...
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Fig. 5. Structure of a multichannel adaptive filter 
 

An important advantage of the multichannel adaptive 
filter is the reduction of the general order of the model due to 
the exclusion of internal competition of canonical component 
filters by using the distributed structure of the adaptive filter 
[9,10]. Moreover, the adaptive filter acquires this opportunity 
precisely because of the multi-channel and iterative filter 
setup procedure. Each iteration enhances the role of the 
residual signal filter, which is a multi-channel filter, plays the 
role of a composite model of components recognized by the 
canonical filters preceding it [11]. Therefore, all the properties 
of the composite model of the term are inherent in the residual 
signal filter. 

Let us show the configuration of the multi-channel 
adaptive filter by the example of building the component 
model of the signal considered in paragraph IV. 
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The order of the useful signal is 5 (the signal contains 
first and third harmonics and aperiodic components), i.e. the 
order of the multichannel adaptive structural model is 9.  

The filter coefficients of the effective core of the classical 
adaptive filter and multichannel filter are identical, so their 
amplitude-frequency characteristics coincide (fig. 3b). The 
amplitude-frequency response of the multichannel noise filter 
is shown in fig. 6.  

Thus, the use of the distributed adaptive filter structure 
made it possible to reduce the overall order of the model, due 
to the elimination of the internal competition of the canonical 
component filters (from 14 to 9 for the signal in question). 

 

 
Fig. 6. Noise filter amplitude-frequency response of a multichannel system 

 

VIII. CONCLUSION 

The method of multichannel structural analysis proposed 
by the authors is fundamentally different from the classical 
structural analysis, because it changes the ideology of the 
adaptive structural model tuning, smoothing the effect of 
competition of the effective core filter components. 

A multi-channel adaptive filter, comprising the channels 
for configuring canonical filters and the residual signal filter, 
forms a distributed system for recognizing the signal structure. 
The perfection of the structural model created by him is 
ensured by the emergence of positive feedback between 

different parts of the multichannel system, due to which the 
components recognized by canonical filters do not participate 
in the competitive environment of recognition of unknown 
components by the residual signal filter. It is this property of 
a multichannel adaptive filter that creates favorable conditions 
for recognizing the signal structure on a small number of 
samples by a low-order filter, increasing the speed of relay 
protection using distributed structural models. 
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